

Lindsey T. Ellis, BS Madeleine P. Opsahl, BA Deiter J. Duff, MD

Chris C. Stacy, MD

University of Missouri Department of Pathology & Anatomical Sciences Office of the Chief Medical Examiner of Boone and Callaway Counties Columbia, Missouri 65212 USA

Disclosures

The authors have no actual or potential conflicts of interest, financial or otherwise, to disclose in relation to the content of this presentation.

How common is drowning?

- Accidental drowning accounts for an average of 3,868 deaths per year (or approximately 10 deaths per day) in the United States, including drownings associated with boating incidents [1-2].
- In Missouri alone, accidental drownings have accounted for between 21 and 68 deaths per year since 2011; most of these have occurred in publicly-owned freshwater lakes and rivers during the summer months [3].
- The Office of Chief Medical Examiner of Boone & Callaway Counties names asphyxia due to drowning as the cause of death in an average of 11 cases each year (about 2% of our total cases).

Autopsy findings in drowning cases

- Marked pulmonary edema

 - Frothy or foamy fluid in airways
 Increased lung weight
 Dusky discoloration indicating vascular congestion
- Water in the stomach
- · Hemorrhage of mastoid air cells in the middle ear
- · Increased fluid volume in the maxillary sinus and sphenoid sinus ("Svechnikov's sign")
- Presence of diatoms in pulmonary vasculature
- · Hemolytic staining of the aortic intima (particularly in freshwater
- drownings)
- Decreased spleen weight [4-8]

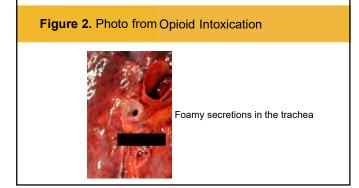
The Drowning Index (D.I.)

Nishitani et al. (2006):

Drowning Index (DI) = $\frac{[Lungs (g) + Pleural Effusion (g)]}{2}$ Spleen (g)

The Drowning Index (D.I.)

Sugimura et al. (2010):


$$DI = \frac{[Lungs (g) + Pleural Effusion (g)]}{Spleen (g)} \ge 14.1$$

Specific for drowning vs. mechanical asphyxia and acute cardiac death

Figure 1. Photos from Drowning

(A) shows foamy secretions in the trachea; (B) and (C) show foam in the bronchi (pulmonary edema) and dusky discoloration of the lung parenchyma indicating significant congestion.

Case Selection

- Causes of death from Boone-Callaway County Medical Examiner's Office in Columbia, Missouri cases between January 1, 2011 and December 31, 2016 were collected.
- Deaths due to drowning, opioid intoxication, multidrug intoxication, and asphyxia due to hanging were identified.
- Cases were excluded if:
 - They contained insufficient data for analysis.
 - The body showed signs of decomposition at time of autopsy.
 - The decedent was under the age of 18 years.
- · Cases were not separated for analysis based on gender or age.

Data Collection

- 536 total cases were identified:
 - 45 drowning cases
 - 180 opioid intoxication cases • 261 multidrug intoxication cases
 - 50 hanging cases
- The body weight, spleen weight, bilateral pleural effusion volumes, and bilateral lung weights for each case were recorded.
 - Pleural effusion volume for each autopsy is estimated in milliliters.
 - If no pleural effusion volume was recorded, the minimum pleural fluid volume was estimated using 0.16 milliliters/kilogram body weight [14].

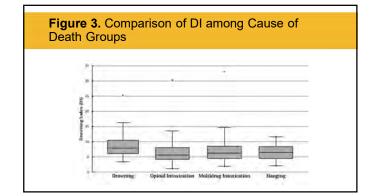
 - · Pleural effusion volumes were converted to weight in grams using a density of 1 gram/milliliter.

Calculations

- The DI was calculated for each case [9].
- The DI, combined effusion and lung weight, and spleen weight was compared among the cause of death groups.
 - The Mann-Whitney U-test was used to evaluate for statistical
 - significance using a 95% confidence interval (p < 0.05).

Table 1. Summary of Data from Each Cause ofDeath Group

Cause of Death	Drowning	Opioid Intoxication	Multidrug Intoxication	Asphyxia due to Hanging
Sample Size	45	180	261	50
Effusion + Lungs (grams)	1463 (655-2790)	1562 (606-3530)	1409 (596-4050)	1268 (647-2118)
Spleen (grams)	180 (50-580)	255 (20-1800)	220 (60-750)	200 (75-500)
DI	7.9 (3.3-25.2)	5.6 (1.1-30.3)	6.2 (1.8-33.0)	6.4 (2.1-11.5)


*Data are given as median (minimum-maximum)

Combined Lung & Effusion Weight

- Opioid overdose resulted in the highest combined lung and effusion weight.
- Hanging resulted in the lowest combined lung and effusion weight.
- The difference in combined lung and effusion weight when comparing multidrug overdose to drowning was not statistically significant.

Spleen Weight

- Opioid overdose resulted in the highest spleen weight.
- Drowning resulted in the lowest spleen weight.
- The difference in spleen weight between drowning and hanging was not significant.

Table 2. Percentage of Cases with DI > 14.1

Cause of Death	
Drowning	13.3% (6/45)
Opioid Intoxication	6.1% (11/180)
Multidrug Intoxication	3.5% (9/261)
Asphyxia due to Hanging	0.0% (0/50)

Drowning Index (D.I.)

- The lowest DI (1.1) was associated with an opioid overdose and highest DI (33) was associated with a multidrug overdose.
- Drowning cases accounted for the highest mean DI of the causes of death studied.
- DI > 14.1:

 - 6 of 45 drowning cases (13.3%)
 11 of 180 opioid overdoses (6.11%)
 9 of 261 multidrug overdoses (3.45%)

 - 0 of the hangings (0%)
- The specificity of the DI for drowning is 95%.
- The sensitivity of the DI for drowning is 13%.

Discussion

- · Combined lung and pleural effusion weight are meaningless when distinguishing between drowning, acute opioid intoxication, and acute multidrug intoxication deaths.
- The inclusion of spleen weight confers a higher specificity of the DI when compared to combined lung and effusion weight alone.
- A DI greater than or equal to 14.1 cannot be considered diagnostic of drowning.
- · The drowning index has no applicability in distinguishing between asphyxia or "asphyxia-like" deaths, including those associated with acute drug intoxication.

Areas for Further Research

• Future research to investigate the possibility of decreased spleen weight in true asphyxial deaths, such as drowning and hanging, is warranted.

References

- Centry 1, Sec. Disease Centry and Prevention. National Centry for Injury Prevention and Central. Web-based injury Statistics Query and Reporting System COD: Wide-anguing online data for exploring online to the Centry of Centry Control Center for Health Statistics, 2016. Available
- CoC: Weberunging unline data for epidemiologic research (WONDER), Atlanta, GA: CDC, National Center for Health Statistics; 2016. Available with Michigan Control Public Safety, Microan State Highery Party, Miscouri Bording & Dorowing Statistics; 2016. Available at: http://www.mithg.exten.org/actistics/boc/control/state/reformang/statistics; 2016. Available at: http://www.mithg.exten.org/actistics/boc/control/state/reformang/statistics; 2016. Available at: http://www.mithg.exten.org/actistics/boc/control/state/reformang/statistic; 2016. Available at: http://www.mithg.exten.org/actistics/boc/control/state/reformang/state/state/reformang/state/state/reformang/state/state/reformang/state/state/state/reformang/state/stat 3.
- 4.
- 27.3.5. Juan L. LUK (Inspice) M. et al. (2002) Peteriorem ling seight in drawings: a comparison with acute applyation and cardiac charl. Legal Meter 27.3.5. Juan 2014. Comparison of the com 7.
- 8. 9.
- Lega meru. z z z z z katiwagi M. Matsusue A. Hara K. Kapeura M. Kubo S (2010) Application of the drowning index to actual drowning cases, Legal Med. 12: 68-72. Wardsk K. Buchdaum R. Walzada F (2014) The Drowning Index: Implementation in Drowning, Mechanical Apphysia, and Acute Myocardial Infarct Cases, J Foremarks 56, 87: 99400. 10. 11.
- y data K. Jaking Sagang Y. Wang Xao J. (2014). The Uroking here: Ingenerination in Licolong, wechanical adopting, and Acute keylocatha intract Later Matchers E. Lew E. Drug abuse. In: Dolinak D. Matchers E. Lew E. estims: Forenaic Pathology: Principles and Practice. 1 ed. San. Diego: Academic Press; 2005. Pathons NTS (2006). Opolisa and In econtrol foregration. *BML* Statistic Journal of Anasthetica, Volume 100, Issue G. 747–788. Nappene, H. al. Volume and cellular content of normal pleural fluid in humans examined by pleural lange. Am J Respir Crit Care Med. 2000 Sept (120); 1020. Haffner HT, Graw M. Erdelkamp J. Spleen findings in drowning. Forenaic Sci. Int. 1994 Jan. 98(2):195-104. 12.
- 13. 14.
- 15.